Learning Features for Fingerprint Classification

نویسندگان

  • Xuejun Tan
  • Bir Bhanu
  • Yingqiang Lin
چکیده

In this paper, we present a fingerprint classification approach based on a novel feature-learning algorithm. Unlike current research for fingerprint classification that generally uses visually meaningful features, our approach is based on Genetic Programming (GP), which learns to discover composite operators and features that are evolved from combinations of primitive image processing operations. Our experimental results show that our approach can find good composite operators to effectively extract useful features. Using a Bayesian classifier, without rejecting any fingerprints from NIST-4, the correct rates for 4 and 5-class classification are 93.2% and 91.2% respectively, which compare favorably and have advantages over the best results published to date.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automatic Fingerprint Classification Algorithm

Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...

متن کامل

An Automatic Fingerprint Classification Algorithm

Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...

متن کامل

A New Machine Learning Approach to Fingerprint Classification

We present new fingerprint classification algorithms based on two machine learning approaches: support vector machines (SVMs), and recursive neural networks (RNNs). RNNs are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features which can be integrated in the SVMs. SVMs are combined with a new error correcting code scheme whi...

متن کامل

Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines

We present new fingerprint classification algorithms based on two machine learning approaches: support vector machines (SVM), and recursive neural networks (RNN). RNN are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features of the fingerprint which can be integrated in the SVM. SVM are combined with a new error correcting c...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003